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Abstract

A 3-D potential-based boundary element method (BEM) is coupled with a 3-D finite element method (FEM) for the

time-dependent hydroelastic analysis of cavitating propulsors. The BEM is applied to evaluate the moving cavity

boundaries and fluctuating pressures, as well as the added mass and hydrodynamic damping matrices. The FEM is

applied to analyze the dynamic blade deformations and stresses due to pressure fluctuations and centrifugal forces. The

added mass and hydrodynamic damping matrices are superimposed onto the structural mass and damping matrices,

respectively, to account for the effect of fluid–structure interaction. The problem is solved in the time-domain using an

implicit time integration scheme. An overview of the formulation for both the BEM and FEM is presented, as well as

the BEM/FEM coupling algorithm. Numerical and experiment validation studies are shown. The effects of

fluid–structure interaction on the propeller performance are discussed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Marine propellers usually operate in nonuniform wake due to the hull geometry, shaft inclination, unsteady sea

condition, or maneuvering of the ship. Thus, the hydrodynamic blade load, cavitation pattern, and resulting blade

stresses change with the blade angle. In addition, the hydrodynamic and centrifugal forces may result in blade

deformation, which will in turn affect the surrounding flow field. Nevertheless, most design/analysis methods assume

the blades to be rigid, and thus allow the hydrodynamic pressures and structural responses to be computed separately.

Moreover, most structural models only consider the mean blade load. Hence, large safety factors are often required to

ensure adequate strength, stiffness, and durability. For conventional propellers, traditional methods usually lead to

satisfactory design. However, blade strength and vibration considerations become increasingly important due to the use

of more extreme geometries such as highly skewed propellers or supercavitating propellers. In such cases, stress

concentrations, severe blade distortions, and/or resonant blade vibration may occur. Thus, a reliable method of

predicting the hydrodynamic and hydroelastic blade performance is needed.

Recently, there has also been an increased interest toward flexible composite propulsors in both the marine and

submarine industry. In addition to the obvious advantages of low mass and high specific strength, composite materials

are more resilient to corrosion and cavitation damage. Composite materials tend to reduce life-cycle cost, allow weight
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conservation, and yield better hydrodynamic and fatigue performance. Most importantly, the efficiency of the propeller

can be improved via hydroelastic tailoring by exploiting the anisotropic properties of composite materials. However,

these advantages can be realized only with the help of reliable methods that can accurately predict the performance of

flexible propulsors in time-dependent flows.

The objective of this work is to develop a simulation tool to predict the hydroelastic performance of flexible marine

propellers in nonuniform wake. The effects of fluid–structure interaction on the cavitation pattern, propeller

performance, and stress distribution are investigated. To limit the scope, the current work focuses on metallic propellers

with small elastic deformations. However, extension of the current method to model flexible composite material

behavior is underway.
1.1. Previous work

To determine the hydrodynamic response of the propeller, vortex–lattice methods (VLMs, or lifting surface methods)

and boundary element methods (BEMs, or panel methods) can be applied. The VLM was first introduced for the

analysis of flow around marine propulsors by Kerwin and Lee (1978). Vortex and source lattices were placed on the

mean camber surface of the blade and a robust arrangement of singularities and control points were employed to

produce accurate results (Kinnas and Fine, 1989). The BEM was first applied for the analysis of marine propulsors by

Hess and Valarezo (1985) using a velocity based approach, and later by Lee (1987a) using a potential based approach.

Contrary to VLMs, BEMs discretized the blade surface instead of the mean camber surface, which inherently accounts

for the effect of nonlinear thickness-loading coupling. Thus, BEMs offer more accurate prediction of the flow details,

but require more CPU time and memory than VLMs. Although both VLMs and BEMs are potential based methods,

they continue to be very efficient and reliable tools in the prediction of the hydrodynamic performance of propulsors

compared to viscous solvers. However, both VLMs and BEMs assume the blades to be perfectly rigid, thus the dynamic

interactions between blade deformation and fluctuating fluid pressures cannot be captured.

Since most past methods assumed the blades to be perfectly rigid, the structural response can be computed separately

by applying the blade pressure obtained from the hydrodynamic model. The most extensively used structural model is

based on the modified cantilever beam theory developed by Taylor (1933). It assumed the blade to be a cantilever beam

loaded by thrust and torque distributed linearly over the radius (Schoenherr, 1963). Later, modifications were made to

include the effects of rake, skew, and centrifugal force (Morgan, 1954; Schoenherr, 1963; Atkinson, 1968). The beam

theory has been shown to be suitable for estimating the stress near the roots of propeller blade with conventional

geometry and relatively narrow plan form. However, it cannot accurately predict stress distribution for complex blade

geometries (e.g. propellers with high skew, wide blade outline, or vastly asymmetrical blade sections). To improve blade

stress predictions, a thin-shell approach was introduced by Conolly (1961). However, due to the assumption of

symmetrical forms and normal deflections, this approach was appropriate only for wide blade geometries. To overcome

the limitations of shell theory, finite element methods (FEMs) have been employed for blade strength analysis since the

early 1970’s. Notable studies in this area include the works of Genalis (1970) using triangular plane elements, Sontvedt

(1974) using thin-shell elements, Atkinson (1973) using super-parametric thick shell elements, and Ma (1974) using 3-D

quadratic isoparametric brick elements. In all of these models, the fluid pressure acting on the blade surface was

obtained by employing either the quasi-steady method, lifting line method, or lifting surface method. The effects of

fluid–structure interactions were ignored, i.e. the fluid pressure was determined using the undeformed blade geometry.

The results indicated that the FEM is more accurate than the other methods for predicting steady and unsteady blade

stresses, particularly for extreme propeller geometries.

To account for change in fluid pressure due to blade deformation, an iterative procedure was developed by Atkinson

and Glover (1988). A lifting surface method was used to determine the fluid pressure, which was imposed on the blade

surface to obtain the change in blade geometry via a FEM, and the process was repeated until a stable operating

condition was reached. The effect of cavitation was considered, but the study was limited to steady flow conditions

(Atkinson and Glover, 1988). Thus, the dynamic blade stress and the effect of fluid–structure interaction on the

hydrodynamic performance cannot be captured. Later, a coupled approach was introduced by Kuo and Vorus (1985)

for dynamic blade stress analysis. A potential-based method was used to determine the hydrodynamic blade load, as

well as the added mass and damping associated with elastic blade motion due to unsteady pressure loading. The coupled

problem was solved in the frequency domain using a FEM with 3-D linear isoparametric brick elements (Kuo and

Vorus, 1985). Nevertheless, the method was limited to the dynamic analysis of noncavitating fully submerged

propellers, and the effect of blade displacement on the fluid pressure was ignored (i.e. the change in influence coefficients

due to blade deformation were assumed to be negligible). A nonlinear coupled strategy for hydroelastic blade analysis

using the FEM and lifting surface methods was also developed by Lin and Lin (1996). The change in influence
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coefficients due to blade displacement were included, and the effect of geometric nonlinearity was considered. However,

the work was limited to steady, noncavitating propellers. Thus, the dynamic blade loads and stress distributions cannot

be obtained.

Recently, Dyson (2000) and Dyson et al. (2000) presented a numerical model for the hydroelastic analysis of surface-

piercing propellers. In their work, a 3-D FEM was used to model the structure. A combination of 2-D semi-loof shell

elements and 3-D brick elements were used. The added mass effect of the surrounding water was included by

distributing point masses across the surface of the blade according to a profile based potential flow theory around a flat

plate. The total damping ratio was taken to be 0.05. To simplify the analysis, an assumed instead of evaluated

hydrodynamic load model was applied. However, due to the over simplification of the hydrodynamic and added mass

models, the method cannot provide an accurate description of the fluid–structure interaction and resulting dynamic

response.
1.2. Objective of the present work

The objective of this work is to develop a simulation tool to predict the time-dependent hydroelastic performance of

cavitating propellers subject to spatially varying inflow.
2. Formulation

A low-order potential-based 3-D BEM, PROPCAV, is applied to determine the moving cavity boundaries and

fluctuating pressures. PROPCAV was first developed for the analysis of fully wetted marine propellers in steady flow by

Lee (1987b) and Kerwin et al. (1987) and in unsteady flow by Hsin (1990) and Kinnas and Hsin (1992). The method was

later extended to model the flow around 2-D partially cavitating and supercavitating hydrofoils (Kinnas and Fine,

1991), 3-D partially cavitating hydrofoils (Fine and Kinnas, 1993), and 3-D cavitating propellers (Kinnas and Fine,

1992). In Mueller and Kinnas (1999), an iterative cavity detachment search algorithm based on the Villat–Brillouin

condition (Brillouin, 1911; Villat, 1914) was added to model midchord cavitation. Recently, the method has been

further extended to predict simultaneous face and back cavitation on conventional fully submerged propellers (Young

and Kinnas, 2001a), supercavitating propellers (Young and Kinnas, 2001b, 2003c), and surface-piercing propellers

(Young and Kinnas, 2001b, 2004, 2003b; Kinnas and Young, 2003).

The commercial FEM software, ABAQUS (2004), is applied to determine the dynamic blade response. User-defined

subroutines are developed to couple the BEM and FEM to include the effects of fluid–structure interaction. An

overview of the formulation and implementation is provided below.
2.1. Definition of the flow field

Consider a flexible cavitating propeller subjected to a general effective inflow wake ~qE ,
1 as shown in Fig. 1. The

propeller is taken as right-handed and is assumed to be advancing with a constant forward velocity Va. The effective

inflow velocity, ~qE , is defined with respect to the ship-fixed coordinate system ðxs; ys; zsÞ with the origin located at the

center of the hub. The xs-axis is co-linear with the propeller axis of rotation and is positive in the downstream direction.

The ys-axis is the vertical coordinate defined positive in the direction opposite to gravity.

The propeller is assumed to be rotating at a constant angular velocity o. To avoid the need for a moving mesh, the

fluid problem is solved using a rotating blade-fixed coordinate system ðx; y; zÞ, which is attached to the reference blade.

As shown in Fig. 1, the x-axis is the same as the xs-axis, and the y-axis is co-linear with the pitch change axis with the

positive direction pointing toward the blade tip. The inflow velocity, with respect to the blade-fixed coordinate system,

can be expressed as follows:

~qinð~x; tÞ ¼ ~qEðxs; rs; ysÞ � ~O� ~x, (1)

where rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2s þ z2s

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
, ys ¼ arctanðzs=ysÞ ¼ y� ot, y ¼ arctanðz=yÞ, and ~O ¼ ½�o; 0; 0�T.

From here on, the notation ð~x; tÞ will be dropped for simplicity since both the fluid and solid problems are solved with

respect to the blade-fixed coordinate system.
1~qE is assumed to be the effective wake, i.e. it includes the interaction between the vorticity in the inflow and the propeller (Kinnas et

al., 2000; Choi, 2000).
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Fig. 1. Propeller subjected to a general inflow wake. The propeller-fixed coordinate system which rotates with the propeller ðx; y; zÞ and
the ship-fixed (inertial) coordinate system ðxs; ys; zsÞ are shown.
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The resulting flow is assumed to be incompressible and inviscid. The total velocity, ~v, is expressed in terms of ~qin and

the perturbation potential F:

~v ¼ ~qin þ ~rF, (2)

where F is the perturbation velocity potential corresponding to the propeller-induced flow field, which is assumed to be

incompressible, inviscid, and irrotational.

The momentum equation with respect to the rotating blade-fixed coordinate system can be expressed as follows:

q~v
qt
þ ð~v � ~rÞ~v ¼ �~r

Pt

r

� �
þ~g� ~O� ð~O� ~xÞ � 2~O�~v, (3)

where the last two terms in Eq. (3) denote the centrifugal acceleration and Coriolis acceleration, respectively; Pt is the

total pressure; r and g are the fluid density and amplitude of the gravitational acceleration, respectively.

By applying the continuity equation (~r �~v ¼ 0) and making use of Eqs. (1) and (2), it can be shown that Eq. (3) can be

rewritten as follows:

q~qE

qt
�~v� ð~r �~qEÞ ¼ �

~rH ; ð4Þ

where H ¼ qF=qtþ Pt=rþ 1
2
j~vj2 �~g � ~x� 1

2
ð~O� ~xÞ2.

For the case of a steady effective wake, q~qE=qt ¼ 0, integration of Eq. (4) between two points on the same streamline

yields H ¼ constant along the streamline. Applying Eq. (1), the absolute total pressure Pt can be computed as follows:

Pt ¼ Po þ r
1

2
j~qinj

2 �
qF
qt
�

1

2
j~vj2

� �
; ð5Þ

where Po ¼ Patm þ rgds is the absolute hydrostatic pressure at ~x; Patm is the atmospheric pressure and ds is the

submerged depth of point ~x from the free surface.
2.2. Governing equation for the fluid

The fluid problem is solved with respect to perturbation potential F in the blade-fixed coordinate system (x; y; z),
which is governed by the Laplace equation, r2F ¼ 0.

For small blade deformations, F, can be linearly decomposed into two parts:

F ¼ fþ j, (6)
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where f denotes the perturbation potential due to rigid blades rotating in a nonuniform wake, and j denotes the

perturbation potential due to the vibrating blades in uniform wake.

Thus, the total velocity (Eq. (2)) can be rewritten as

~v ¼ ~qin þ ~rfþ ~rj ¼ ~qþ ~rj, (7)

where ~q ¼ ~qin þ ~rf is the fluid velocity due to rigid blades rotating in nonuniform wake; ~rj is the fluid velocity due to

vibrating blades in uniform wake.

Similarly, the total pressure, Pt ¼ Pþ Pv, can also be decomposed into a part due to rigid blade motion, P, and a

part due to elastic blade deformation, Pv:

P ¼ Po þ r
1

2
j~qinj

2 �
qf
qt
�

1

2
j~qj2

� �
, ð8Þ

Pv ¼ r �
qj
qt
�~qin � ~rj

� �
, ð9Þ

using the relations qF=qt ¼ qf=qtþ qj=qt and j~vj2 ¼ j~qj2 þ 2~q � ~rjþ j~rjj2 � j~qj2 þ 2~qin � ~rj.
2.3. Governing equation for the solid

The dynamic equation of motion with respect to the blade-fixed coordinate system can be written as follows:

½M�f €ug þ ½D�f _ug þ ½K�fug ¼ fFcg þ fFg þ ff g, (10)

where f €ug, f _ug, and fug are the nodal acceleration, velocity, and displacement vectors, respectively.

½M� ¼
R
rs½N�

T½N�dV , ½D� ¼
R
d½N�T½N� dV , and ½K � ¼

R
½B�T½E�½B� are the structural mass matrix, damping matrix,

and stiffness matrix, respectively. ½N�, ½B� ¼ ½q�½N�, and ½E� are the displacement interpolation matrix, strain-

displacement matrix, and material constitutive matrix, respectively; rs and d are the mass density and viscous damping,

respectively, of the blade. In the current model, the blades are assumed to be made of a homogeneous, isotropic, and

linear elastic material. Thus, the material properties can be represented by Young’s modulus E and Poisson’s ratio n.
2.4. Inertial and hydrodynamic forces

The nodal force vectors on the right-hand side of Eq. (10) represent the centrifugal force (fFcg), hydrodynamic force

due to with rigid blade rotating in nonuniform wake (fFg), and hyrodynamic force due to elastic blade deformation

(ff g), respectively. The centrifugal force ( ~Fc ¼ �m~O� ½~O� ð~xþ~uÞ�) contributes to the load stiffness matrix, and is

applied as element based loads in ABAQUS (2004). It should be noted that the Coriolis force, which contributes to the

load damping matrix, is assumed to be negligible due to the small deformations. The hydrodynamic force vectors, fFg

and ff g, are computed by integrating the corresponding pressures over the blade surface:

fFg ¼

Z
½N�TfPgdS; ff g ¼

Z
½N�TfPvgdS. (11,12)

To solve Eq. (10), the values of perturbation velocity potentials (f and j) are needed to determine the fluctuating

fluid pressures (P as given by Eq. (8) and Pv as given by Eq. (9)). In this work, the fluid problem is linearly decomposed

into two parts: rigid blades rotating in nonuniform wake and flexible blades vibrating in uniform wake. Thus, f is

obtained by solving the rigid blade problem, and j is obtained by solving the vibrating blade problem. Both f and j are

governed by the Laplace equation, and thus can be reduced to a boundary value problem over the blade, hub, cavity,

and wake surfaces, which can be solved using a 3-D potential-based BEM. The velocity compatibility and pressure

equilibrium conditions are imposed on the blade surface, which provides the kinematic boundary condition for the fluid

model and the surface traction for the solid model, respectively. The fluid–structure interaction algorithm is similar to

that presented in Kuo and Vorus (1985), but the problem is solved in the time domain and the effect of hydrodynamic

cavitation is considered.

In the sections that follow, the formulation and implementation of the two parts of the fluid problem are presented,

followed by a detailed explanation of the coupling procedure between the BEM and FEM to capture the fluid–structure

interactions.
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2.5. Hydrodynamic analysis of the rigid blade problem

The perturbation potential due to rigid blades rotating in nonuniform wake, f, at every point p on the combined

wetted blade and cavity surface, SWBðtÞ [ SCðtÞ, is given by Green’s third identity:

2pfpðtÞ ¼

Z Z
SWBðtÞ[SC ðtÞ

fqðtÞ
qGðp; qÞ

qnqðtÞ
� Gðp; qÞ

qfqðtÞ

qnqðtÞ

� �
dS

þ

Z Z
SW

Dfðrq; yq; tÞ
qGðp; qÞ

qnqðtÞ
dS; p 2 SWBðtÞ [ SCðtÞ, ð13Þ

where the subscript q corresponds to the variable point in the integration. Gðp; qÞ ¼ 1=Rðp; qÞ is Green’s function in an

unbounded 3-D fluid domain, with Rðp; qÞ being the distance between points p and q; ~nq is the unit vector normal to the

integration surface, with the positive direction pointing into the fluid domain. SWBðtÞ denotes the wetted blade and hub

surfaces, and SCðtÞ denotes the cavitating/ventilated surfaces.

The wake surface, SW , is assumed to have zero thickness and its geometry is determined by satisfying the force-free

condition. The iterative lifting surface method developed by Greeley and Kerwin (1982) is used to align the wake with

the circumferentially averaged inflow. The dipole strength Dfðr; y; tÞ on the wake surface is determined as follows:

Dfðr; y; tÞ ¼ Df rT ; t�
y� yT

o

� �
, (14)

where ðr; yÞ are the cylindrical coordinates at any point in the trailing wake surface, and ðrT ; yT Þ are the blade trailing

edge coordinates of the corresponding streamline.

The value of the dipole strength, DfðrT ; tÞ, at the trailing edge of the blade at radius rT and time t, is given by

Morino’s Kutta condition (Morino and Kuo, 1974):

DfðrT ; tÞ ¼ fþðrT ; tÞ � f�ðrT ; tÞ, (15)

where fþðrT ; tÞ and f�ðrT ; tÞ are the values of the f at the upper (suction side) and the lower (pressure side) blade

trailing edge, respectively, at time t.

2.5.1. Kinematic boundary condition on wetted blade and hub surfaces

The kinematic boundary condition requires the flow to be tangent to the wetted blade and hub surface, which forms a

Neumann-type boundary condition:

qf
qn
¼ �~qin �~n. (16)

2.5.2. Dynamic boundary condition on cavitating surfaces

The dynamic boundary condition on the cavitating blade and wake surfaces requires the pressure everywhere on the

cavity to be constant and equal to the prescribed cavity pressure: P ¼ Pc. For fully submerged propellers, Pc is equal to

the saturated vapor pressure of the liquid; for partially submerged or ventilated propellers, Pc is equal to the

atmospheric pressure.

By applying Bernoulli’s equation, the total cavity velocity, ~qc, can be expressed as follows:

j~qcj
2 ¼ n2D2sn þ j~qinj

2 � 2
qf
qt

, (17)

where sn � ðPo � PcÞ=ð12 rn2D2Þ is the cavitation number; n ¼ o=2p and D are the propeller rotational frequency and

diameter, respectively. It can be shown that Eq. (17) can be converted to a Dirichlet-type boundary condition for f
(Fine, 1992).

2.5.3. Kinematic boundary condition on cavitating surfaces

The height of the cavity (h), defined normal to the blade surface, is given by the kinematic boundary condition, which

requires that the total velocity normal to the cavity surface to be zero:

D

Dt
ðn� hðs; v; tÞÞ ¼

q
qt
þ~qcðx; y; z; tÞ � ~r

� �
ðn� hðs; v; tÞÞ ¼ 0, (18)

where s, v, and n are the local curvilinear coordinates as shown in Fig. 2.
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Fig. 2. BEM discretization of the blade and wake surfaces.
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2.5.4. Cavity closure condition

The height and extent of the moving cavity boundary are unknown and have to be determined as part of the solution.

The cavity length at each radius r and time t is given by the function lðr; tÞ. For a given cavitation number, sn, the cavity

planform, lðr; tÞ, must satisfy the following condition:

dcðlðr; tÞ; r; snÞ ¼ 0, (19)

where dc is the thickness of the cavity trailing edge. Eq. (19) requires that the cavity closes at its trailing edge.

2.5.5. Numerical algorithm

The integral surfaces are approximated with hyperboloidal panels (Kinnas and Hsin, 1992) on which constant

strength dipoles and sources are distributed. An example of the discretized blade and wake surface is shown in Fig. 2. A

constant time increment, Dt, is used. At each time step, the propeller blades rotate by a blade angle increment

Dy ¼ oDt, and the solution is only obtained for the key (i.e. reference) blade. The influence of the other blades is

accounted for in a progressive manner by using the solution from an earlier time step when the key blade was in the

position of that blade. A second-order moving least-squares derivative recovery method (Tabbara et al., 1994) is used to

compute the time derivatives.

The discretized form of Eq. (13) can be written as follows:

2pfi ¼
XNK

k¼1

XMR

m¼1

XNC

n¼1

A0i;m;n;kfm;n;kðtÞ � B0i;m;n;k
qf
qnm;n;k

ðtÞ

� �
þ
XNW

l¼1

W i;m;l;kDfm;l;kðtÞ � Gi;m;l;kQm;l;kðtÞ
� �( )

for i ¼ 1; . . . ;MR� ðNC þNCW ðm; tÞÞ, ð20Þ

where A0i;m;n;k represent the potential induced at the ith control point on the key blade by an unit strength dipole at the

nth panel on the mth strip of the kth blade. Note that k ¼ 1 refers to the key blade. Similarly, B0i;m;n;k, Gi;m;l;k, and

W i;m;l;k represent the influence coefficients due to unit strength source on the blade, unit strength source on the

cavitating portion of the wake, and unit strength dipole on the wake, respectively. Qm;l;k and Dfm;l;k represent the cavity

source strength and potential jump, respectively, on the lth panel of the mth strip of the kth blade wake. The quantities

NK , MR, NC, NW are defined in Fig. 2. NCW ðm; k; tÞ is the number of cavitating wake panels on the mth strip of the

kth blade at time t.

Eq. (20) can be more generally expressed in matrix form as

½A�ffg ¼ ½B�
qf
qn

	 

, (21)

where ½A� and ½B� denote the dipole and source, respectively, influence coefficient matrices.

The known values of f and qf=qn are given by boundary conditions specified in Eqs. (14)–(17). The cavity heights on

the blade and the wake are computed by applying the flow tangency condition on the cavitating surfaces (Eq. (18)). The

correct cavity planform at each time step is obtained iteratively using a Newton–Raphson technique until the cavity
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closure condition (Eq. (19)) is satisfied. A split panel technique (Kinnas and Fine, 1993; Fine, 1992) is used to treat

panels intersected by the cavity trailing edge. The cavity detachment location is determined in an iterative manner by

applying the Villat–Brillouin smooth detachment condition (Brillouin, 1911; Villat, 1914). Once the values of f are

known on all the blade panels at each time step, the hydrodynamic pressure, P, is given by Eq. (8). Finally, the

hydrodynamic force for the rigid blade problem, F , in Eq. (10), can be obtained by integrating the P over the blade

surface (i.e. Eq. (11)).

Details of the numerical implementation of the BEM for the rigid blade problem and extensive numerical and experimental

validation studies are given in Young and Kinnas (2001a, 2003c), Kinnas and Young (2003) and Kinnas et al. (2003a).

2.6. Hydrodynamic analysis of the vibrating blade problem

The perturbation potential due to flexible blades vibrating in uniform wake, j, at every point p can also be

determined using Green’s third identity:

2pjpðtÞ ¼

Z Z
SB

jqðtÞ
qGðp; qÞ

qnqðtÞ
� Gðp; qÞ

qjqðtÞ

qnqðtÞ

� �
dS þ

Z Z
SW

Djðrq; yq; tÞ
qGðp; qÞ

qnqðtÞ
dS; p 2 SB, (22)

where SB denote the blade and hub surfaces. Eq. (22) can be rewritten in matrix form as

½A�fjg ¼ ½B�
qj
qn

	 

, (23)

where the influence coefficient matrices ½A� and ½B� are the same as those for the rigid blade BEM analysis (Eq. (21)).

The implicit assumption is that the change in influence coefficients with time is negligible, which is valid for small blade

deformations.

Multiplying both sides of Eq. (23) by ½A��1 yields the following expression for j:

fjg ¼ ½C�
qj
qn

	 

, (24)

where ½C� ¼ ½A��1½B�.

Similarly, the i-component of the spatial derivative of j can be computed as follows:

2p
qjp

qxi

ðtÞ ¼

Z Z
SB

jqðtÞ
q
qxi

qGðp; qÞ

qnqðtÞ
�
qGðp; qÞ

qxi

qjqðtÞ

qnqðtÞ

� �
dS

þ

Z Z
SW

Djðrq; yq; tÞ
q
qxi

qGðp; qÞ

qnqðtÞ
dS; p 2 SB, ð25Þ

which can be expressed in matrix form as

qj
qxi

	 

¼ ½Axi

�fjg � ½Bxi
�

qj
qn

	 

, (26)

where ½Axi
� and ½Bxi

� are the coefficient matrices representing the i-component of the induced velocities due to unit

strength dipoles and sources, respectively.

Applying Eqs. (24) and (26) can be rewritten as follows:

qj
qxi

	 

¼ ½Axi

�½C�
qj
qn

	 

� ½Bxi

�
qj
qn

	 

¼ ½Cxi

�
qj
qn

	 

, (27)

where ½Cxi
� ¼ ½Axi

�½C� � ½Bxi
�.

2.6.1. Kinematic boundary condition on blade surface

The velocity compatibility condition requires the normal components of the fluid velocity and solid body velocity to

be equal at the blade surface. Applying linear decomposition, it can be shown that the no penetration conditions

reduces to (Vorus, 1981; Kuo, 1984; Young and Kinnas, 2003b):

qf
qn
¼ �~qin �~n ð28Þ

qj
qn
¼

q~d
qt
�~nþ ½ðrf � rÞ~d� ð~d � rÞðrfÞ� �~n �

q~d
qt
�~n, ð29Þ
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where Eq. (28) is the kinematic boundary condition for the rigid blade case (same as Eq. (16)), and Eq. (29) is the

kinematic boundary condition for the elastic blade case. ~d is the displacement vector at the element centroid, and is a

function of the material coordinates of the blade in the rotating blade-fixed coordinates system.

Defining ½T � as the transformation matrix which relates the normal velocities at the element centroids to the element

nodal velocities (i.e. ðq~d=qtÞ �~n ¼ ½T �f _ug), Eq. (29) can be rewritten as follows:

qj
qn
¼ ½T �f _ug. (30)

2.6.2. Time-dependent hydroelastic pressure

The hydroelastic pressure, Pv, can be computed by applying Eq. (9). The values of fjg and fqj=qxig can be obtained

by applying Eq. (30) to Eqs. (24) and (27):

fjg ¼ ½C�½T �f _ug;
qj
qxi

	 

¼ ½Cxi

�½T �f _ug. (31,32)

In this work, the influence coefficients are assumed to be independent of time. Thus, the partial time derivative of j
can be computed as follows:

qj
qt

	 

¼ ½C�½T �f €ug. (33)

Hence, the hydroelastic pressure defined in Eq. (9) can be rewritten as follows:

fPvg ¼ �r½C�½T �f €ug � r½QC�½T �f _ug,

where ½QC� ¼ fqin1g
T½Cx1

� þ fqin2g
T½Cx2

� þ fqin3
gT½Cx3

� and ðqin1 ; qin2 ; qin3 Þ are the three components of the inflow

velocity vector, ~qin.

2.7. Fluid–structure interaction

In order to obtain the vibratory perturbation potential j and hydroelastic pressure Pv via BEM analysis, the solid

body velocities ( _u) and accelerations ( €u) are needed from the FEM analysis. In turn, the FEM analysis requires the

hydrodynamic pressures (P and Pv) from the BEM analysis to solve for the dynamic blade motions (u, _u, and €u). In this

work, the fluid structure interaction problem is solved by expressing the blade motion dependent hydroelastic force

(ff g ¼
R
½N�TfPvgdS, Eq. (12)) in terms of added mass (½Mh�) and hydrodynamic damping (½Dh�), and placing the terms

in the left-hand side of the equilibrium equation of motion, Eq. (10):

ð½M� þ ½Mh�Þf €uðtÞg þ ð½D� þ ½Dh�Þf _uðtÞg þ ½K�fuðtÞg ¼ fF ðtÞg þ fFcg, (34)

where

½Mh� ¼ r
Z
½N�T½C�½T �dS; ½Dh� ¼ r

Z
½N�T½QC�½T �dS. (35,36)

2.7.1. Added-mass matrix

To compute the added-mass matrix, ½Mh�, the transformation matrix, ½T �, is needed to relate the normal velocities at

the centroid of the BEM elements to the nodal velocities of the FEM elements. Representing the normal velocity at the

centroid of the jth BEM panel as the average of the normal velocities at the four corner nodes (see Fig. 3), Eq. (30) can

be rewritten as follows:

qj
qnj
¼ ½Tj �f _Ujg, (37)

where

½Tj � ¼
1
4 ½n

j
x nj

y nj
z nj

x nj
y nj

z nj
x nj

y nj
z nj

x nj
y nj

z�,

f _Ujg ¼ ½ _Uj1
_Vj1

_W j1
_Uj2

_Vj2
_W j2

_Uj3
_Vj3

_W j3
_Uj4

_Vj4
_W j4�

T;

_Ujl , _Vjl , _W jl are the x, y, and z components, respectively, of the velocity vector at the lth corner node of panel j;

f~njg ¼ ½n
j
x nj

y nj
z�
T is the unit normal vector at the centroid of the jth panel, pointing into the fluid domain.
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Fig. 3. The centroid and four corner nodes of the jth BEM element.
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Applying Eq. (37), Eq. (31) can be rewritten as follows:

ji ¼
XNP

j¼1

Cij ½Tj �f _Ujg, (38)

where NP ¼MR�NC is the number of BEM panels per blade, as shown in Fig. 2.

The hydroelastic pressure associated with fluid acceleration at panel i can be calculated as

ðPvÞi ¼ �r
qj
qt i
¼ �r

XNP

j¼1

Cij ½Tj �f €Ujg. (39)

Distributing the force vector associated with fluid acceleration equally among the four corner nodes on panel i, the

elemental added-mass matrix, ½Mh
ij �, given by Eq. (35), can be written as follows:

½Mh
ij � ¼ rSiCij ½Ti�

T½Tj �, (40)

where Si is the surface area of panel i.

Assembling the three degrees of freedom of each BEM node in x; y; z order, the global consistent added mass matrix

½Mh� can be written as

½Mh� ¼

mh
1;1 mh

1;2 � � � mh
1;3ðNNODEÞ

mh
2;1 mh

2;2 � � � mh
2;3ðNNODEÞ

..

. ..
. . .

. ..
.

mh
3ðNNODEÞ;1 mh

3ðNNODEÞ;2 � � � mh
3ðNNODEÞ;3ðNNODEÞ

2
6666664

3
7777775
, (41)

where NNODE ¼ NC � ðMRþ 1Þ is the number of nonoverlapping BEM nodes per blade (see Fig. 2). Each element in

the added mass matrix, mh
i;j , represent the hydrodynamic force imposed at the ith degree of freedom due to unit nodal

accelerations at the jth degree of freedom. For example, mh
2;3ðNNODEÞ represent the y-component of the hydrodynamic

force exerted at node 1 due to unit acceleration in the z-direction of node NNODE.

In general, the matrix of influence coefficients, ½C�, is full and asymmetric. Thus, ½Mh� will also be full and

asymmetric. To reduce computational cost and storage requirement, a HRZ-like lumping technique is applied to

replace ½Mh� with the diagonally-lumped added-mass matrix, ½MLh�. It is obtained by scaling diagonal entries of the

consistent added-mass matrix with the ratio of the sum of the entries that contribute to the motion in the same direction

over the sum of the diagonal entries that contribute to the motion in that direction:

½MLh� ¼

mLh
1 0 0 0

0 mLh
2 0 0

0 0 . .
.

0

0 0 0 mLh
3ðNNODEÞ

2
666664

3
777775, (42)
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where mLh
i denotes the lumped added mass for the ith degree of freedom, and is calculated as

mLh
3ði�1Þþk ¼ mh

3ði�1Þþk;3ði�1Þþk

PNNODE
l¼1

PNNODE
j¼1 mh

3ðl�1Þþk;3ðj�1ÞþkPNNODE
j¼1 mh

3ðj�1Þþk;3ðj�1Þþk

(43)

for k ¼ 1; 2; 3 and i ¼ 1; 2; . . . ;NNODE.

The above mass diagonalization method is simple to implement and it ensures the total added-mass for each

translational degrees of freedom is conserved. The resulting lumped added-mass is decoupled for each degree of

freedom, and thus can be easily superimposed to the structural mass matrix. The HRZ-like lumping technique can be

interpreted as a method of distributing the total fluid inertial force in each direction to the degrees of freedom that

contribute to the motion in that direction. Hence, the lumped mass idealization is sufficient to capture the net effect of

fluid–structure interaction on the hydrodynamic performance and dynamic blade motion.
2.7.2. Hydrodynamic damping matrix

The hydrodynamic damping matrix is generated in a similar fashion as the added-mass matrix. It can be shown that

the elemental hydrodynamic damping matrix, ½Dh
ij �, given by Eq. (36), can be written as follows:

½Dh
ij � ¼ rSiðQCijÞ½Ti�

T½Tj �. (44)

Since the resulting global hydrodynamic damping matrix will also be full and asymmetric, the same lumping procedure

is applied to replace ½Dh� with the diagonally-lumped hydrodynamic damping matrix, ½DLh�.
2.8. Numerical algorithm

The fluid–structure interaction problem is solved by coupling the presented BEM (PROPCAV) with a commercial

FEM software (ABAQUS). The BEM is applied to determine the hydrodynamic load vector due to rigid blades (fF ðtÞg),

the lumped added-mass matrix (½MLh�), and the lumped hydrodynamic damping matrix (½DLh�), all of which

are read by the FEM as inputs via user-defined subroutines. The FEM is then employed to solve the following system of

equations:

ð½M� þ ½MLh�Þf €UðtÞg þ ð½D� þ ½DLh�Þf _UðtÞg þ ½K �fUðtÞg ¼ fF ðtÞg þ fFcg. (45)

The Hilber–Hughes–Taylor implicit direct integration method in ABAQUS (2004) is applied to calculate the dynamic

blade response.

In the FEM model, one-layer of quadratic 3-D solid elements is used across the blade thickness. Quadratic elements

are necessary to avoid hour-glass and shear-lock failures associated with first-order elements. To avoid the need for

interpolation in the BEM/FEM coupling, the exterior nodes of the finite elements are set to coincide with the end-nodes

of the BEM. Thus, NC �MR (chordwise�spanwise) BEM surface panels is equivalent to NC=2�MR FEM solid

volumetric elements. To allow for general blade geometry, a combination of 20-node reduced integration brick

(C3D20R) elements and 15-node triangular (C3D15) elements are used to represent the blade. The nodes at the root of

the blade are fixed in the structural model, i.e. the blades are assumed to be rigidly attached to the hub. The current

model also assumes the blade to be made of homogeneous, isotropic, linear elastic material.

The lumped added-mass and hydrodynamic damping matrices are superimposed onto the structural added mass and

damping matrices via the use of user-defined hydroelastic elements. Each hydroelastic element has only one node, and

each node has three degrees of freedom. The hydroelastic elements have no stiffness; thus they only contribute to the

total mass and damping of the system. The three vector components of the added-mass, mLh
3ði�1Þþk, associated with the

three degrees of freedom (k ¼ 1; 2; 3) for each hydroelastic element is given by Eq. (43). A similar procedure is used to

define the three vector components of the hydrodynamic damping, dLh
3ði�1Þþk, for each hydroelastic element. A total of

NNODE hydroelastic elements are employed, and they are located on the FEM nodes that coincide with the BEM

nodes.

The resulting hydroelastic force due to blade vibration, ff ðtÞg, is computed as follows:

ff ðtÞg ¼ �½MLh�f €UðtÞg � ½DLh�f _UðtÞg. (46)

The total hydrodynamic blade load, ff totðtÞg, is defined as

ff totðtÞg ¼ fF ðtÞg þ ff ðtÞg. (47)
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2.9. Natural frequencies and mode shapes

To avoid expensive complex eigenvalue extraction, the damping matrices are neglected in the current eigenvalue

analysis. Thus, the eigenvalue problem is solved as follows:

ð�o2ð½M� þ ½MLh�Þ þ ½K �ÞfCg ¼ 0, (48)

where o denote the circular frequencies.

3. BEM validation studies

Extensive numerical convergence and experimental validation studies of the current BEM model has been conducted

and are presented in Kinnas and Fine (1992), Young and Kinnas (2001a,2003a–c,2004), and Kinnas et al. (2003b).

Examples of comparisons between predicted and measured propeller blade loads and cavitation patterns in steady and

unsteady conditions are shown here for the sake of completeness.

3.1. Steady performance

Examples of the predicted and measured blade forces and cavitation patterns for a 72� skew propeller (NSRDC

propeller 4383) is shown in Fig. 4. The propeller geometry is given in Boswell (1971) and Cumming et al. (1972), and is

shown in Fig. 4. Open water performance tests were conducted at the NSRDC deep water basin, and cavitation tests

were conducted in a 0.6096 m (24 in) cavitation tunnel at NSRDC (Boswell, 1971). As shown in the figure, the

numerical predictions are in good agreement with experimental measurements for a wide range of flow conditions. In

addition, the predicted cavitation patterns seem reasonable.

3.2. Unsteady performance

Comparisons between the predicted versus observed unsteady cavitation patterns for a three bladed, zero-skew, zero-

rake propeller (DTMB propeller 4148) is shown in Fig. 5. The propeller geometry is given in Kinnas and Pyo (1999),

and is shown in Fig. 5. Also shown in the figure is the effective inflow wake, which corresponds to the screen generated

nonaxisymmetric inflow inside a cavitation tunnel given in Mishima et al. (1995) with the effects of the tunnel walls and

vortical inflow/propeller interactions (nonaxisymmetric ‘‘effective’’ wake) accounted for by using the method of
Fig. 4. Predicted and measured thrust (KT ¼ T=rn2D4) and torque (KQ ¼ T=rn2D5) coefficients as a function of the cavitation

number (sv ¼ sn=J2
A ¼ ðPo � PcÞ=ð12 rn2D2J2

AÞ) and advance ratio (JA ¼ VA=nD) for propeller 4383. Also shown are the predicted

cavitation patterns at three different JA for sv ¼ 3:0.
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Fig. 5. Top: geometry and effective wake of propeller DTMB4148. Middle: Observed versus predicted unsteady cavitation patterns.

Bottom: Comparison of the cavitating blade loads predicted by the current BEM and by a 3-D vortex lattice method (VLM).

Y.L. Young / Journal of Fluids and Structures 23 (2007) 269–295 281
(Kinnas et al., 2000; Choi, 2000). The flow conditions are as follows: sn ¼ ðPo � PcÞ=ð12 rn2D2Þ ¼ 2:576,
JA ¼ VA=nD ¼ 0:9087, and Fr ¼ n2D=g ¼ 9:159. The equivalent JA, 0.957, for unbounded flow is obtained by

matching the fully wetted thrust (T) coefficient, KT ¼ T=rn2D4, with the measured KT , 0.0993, from experiment.

Comparisons of the predicted cavitating thrust and torque coefficients with those produced using a 3-D VLM, MPUF-

3A (Lee et al., 2001), is shown in the bottom of Fig. 5. It can be observed that the predicted cavitation patterns

compared well with experimental observations, and the predicted dynamic blade loads compared well with the 3-D
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VLM. The minor discrepancy between the predicted and observed cavitation patterns near the blade tip region is

probably due to the formation of tip–vortex cavity which was not modelled in the current BEM.
4. FEM validation studies

4.1. Twisted cantilever plate

To assess the accuracy of the current FEM in predicting the vibrational frequencies and mode shapes of propeller

blades, a systematic parametric study is conducted for a twisted cantilever plate shown in Fig. 6. The span (A) to chord

(B) ratio of the plate is 3.0; the thickness (H) to chord (B) ratio is 1
20
; and the twist angle f is 30�. This plate is one of a

series of 30 nonrotating cantilever plates tested by MacBain et al. (1985) as part of a joint government/industry/

university effort to assess the accuracy of state-of-the-art numerical methods in computing the natural frequencies and
Fig. 6. Predicted mode shapes for a twisted cantilever blades. 10� 10� 1 C3D20R elements.

Fig. 7. Comparisons of the predicted and measured frequency parameters for different types of continuum solid elements. 10� 10� 1

elements.
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mode shapes of turbomachinery blades. The specimens were precision-machined at the Air Force Aero Propulsion

Laboratory from 7075-T6 cold drawn aluminium bar stock, and the width of all the specimens was 5.08 cm (2 in). The

measured material properties are: rs (solid density) ¼ 2795:7kg=m3, E (Young’ s modulus) ¼ 71:3GPa,

n (Poisson’ s ratio) ¼ 0:3. The test specimens were carefully tested at two separate laboratories (MacBain et al.,

1985; Kielb et al., 1985), and the maximum error in the measured frequency is 1.7% based on material property and

geometric tolerances (MacBain et al., 1985). Details of experimental and theoretical investigation of the vibrational

characteristics of the plates can be found in MacBain et al. (1985) and Kielb et al. (1985), respectively. Examples of the

predicted mode shapes for the first four modes are shown in Fig. 6. Comparison of the predicted versus measured

frequencies (in air) for different types of continuum solid elements are shown in Fig. 7. The nondimensional frequency

parameter l is defined as

l ¼ oA2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsH=D

p
, (49)

where D ¼ EH3=½12ð1� n2Þ� is the plate flexural rigidity, and o is the vibrational frequency. Five different types of

continuum solid elements were tested: 8-node linear brick (C3D8), 8-node linear brick with reduced integration with

hourglass control (C3D8R), 8-node linear brick with incompatible modes (C3D8I), 20-node quadratic brick (C3D20),

and 20-node quadratic brick with reduced integration (C3D20R). One layer of 10�10 elements were employed. As

expected, 8-node linear brick (C3D8) and 8-node linear brick with reduced integration (C3D8R) elements failed to

capture the measured frequencies due to shear locking and hourglass problems, respectively. The predicted frequencies

compared well with experimental measurements for the other elements (C3D8I, C3D20, and C3D20R).

To model general propeller geometries, triangular elements are needed to model sharp edges at the blade tip and

edges. Since first-order triangular elements tend to be overly stiff and exhibit slow convergence with mesh refinement,

the use of second-order elements is recommended for general propeller blade geometries. In particular, 20-node

quadratic brick elements with reduced integration (C3D20R) appears to be the optimum in terms of numerical accuracy

and computational effort.

To investigate the sensitivity of the solution to varying mesh size, comparison of the predicted and measured

frequencies for different arrangements of l �m� n (spanwise�chordwise�through thickness) C3D20R elements are

shown in Fig. 8. As indicated in the figure, the solution is not sensitive to the mesh size. One layer of elements through

the thickness is sufficient to capture the modal frequencies for the twisted cantilever plate in the case of lower order

modes than five.

4.2. Elliptic hydrofoil

To validate the hydroelastic modelling, numerical results for an elliptic hydrofoil are compared with analytical

solution obtained using the 2-D added mass coefficient. For a rectangular hydrofoil with an elliptic cross-section at zero

angle of attack (a ¼ 0�), the 3-D added mass coefficients can be approximated by applying strip theory. Denoting the

radius of the major and minor axis as a and b, respectively, the 2-D added mass coefficients based on potential theory
Fig. 8. Comparisons of the predicted and measured frequency parameter for different mesh arrangements of l �m� n

(spanwise�chordwise�through thickness) C3D20R elements.
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Fig. 9. Top: Predicted mode shapes for a cantilever elliptic hydrofoil in air. Bottom: Comparison of the predicted natural frequencies

with analytical values obtained using the Timoshenko beam theory; 20� 20 C3D20R elements.

Fig. 10. Top: Predicted mode shapes for a cantilever elliptic hydrofoil in water. Bottom: Comparison of the predicted natural

frequencies with analytical values obtained using the Timoshenko beam theory and the 2-D added mass coefficients; 20� 20 C3D20R

elements were used in the numerical analysis.
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are given by Eq. (50) (Newman, 1997):

m11 ¼ prb2; m22 ¼ pra2; m66 ¼ prða2 � b2Þ2=8. (50)

The geometric parameters of the test hydrofoil are as follows: L (span) ¼ 0:5m, C ¼ 2a (chord) ¼ 0:125m,

T ¼ 2b (maximum thickness) ¼ 0:00625m. The material properties are: r (fluid density) ¼ 1000kg=m3,

rs (solid density) ¼ 2800kg=m3, E (Young’ s modulus) ¼ 72GPa, n (Poisson’ s ratio) ¼ 0:3. The effect of damping

is ignored in this validation study. Based on the Timoshenko beam theory, the natural frequencies of an uniform

cantilever beam in air can be computed as follows (Chopra, 2001):

oair
n ¼

an

L2

ffiffiffiffiffiffiffiffiffiffi
EI11

rsA

s !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðnpr=LÞ2ð1þ E=kGÞ

q , (51)
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Fig. 12. Comparison of the predicted versus measured principal stresses for propeller 4383 subjected to an uniform pressure of 6895Pa

(1 psi) on the face side.

Fig. 11. BEM representation of propeller 4381, 4382, 4383, and 4384.
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where n is the mode number, a1 ¼ 3:516, a2 ¼ 22:03, a3 ¼ 61:70, and a4 ¼ 120:9. A ¼ pab, I11 ¼ pab3=4, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
I11=A

p
,

and k ¼ 4
3
.

If the beam is in water, then the 2-D added mass should be superimposed on the material mass. Thus, the natural

frequencies in water are given by

owater
n ¼

an

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI11

rsAþ pra2

s !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðnpr=LÞ2ð1þ E=kGÞ

q . (52)
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Fig. 14. Comparison of the predicted maximum principal stress contours (in MPa) for all four propellers.

Fig. 13. Comparison of the predicted versus measured blade deflection for propeller 4383 subjected to an uniform pressure of 6895 Pa

(1 psi) on the face side.
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Using the coupled BEM/FEM method presented in this paper, the predicted mode shapes and natural frequencies of

the elliptic hydrofoil in air and in water are shown in Figs. 9 and 10, respectively. As expected, the mode shapes are very

similar in air and in water, and the natural frequencies are reduced by approximately 65% in water due to the effect of

the added mass. Also shown in Figs. 9 and 10 are the analytical natural frequencies given by Eqs. (51) and (52). The

agreement between the numerical and analytical frequencies is excellent for the first two modes. For modes higher than

two, Eqs. (51) and (52) are not valid due to inability of the beam theory to account for twisting of the foil.
4.3. Highly skewed propellers

The next validation test is for a series of four five-bladed skewed marine propellers. The propellers represent typical

designs for container ships or single-screw destroyer-type ships. The parent propeller has a symmetric blade outline with

zero skew, and the other three propellers have maximum skew angles (measured in the plane of the propeller disk) of

36�, 72�, and 108� (Boswell, 1971). The geometric parameters for all four propellers were the same except skew, pitch,

and camber. The propellers were required to achieve equal open water performance, which was achieved by varying the

propeller pitch and camber. The propeller geometries are given in Boswell (1971) and Cumming et al. (1972), and are

shown in Fig. 11. The propellers were subjected to an uniform static air pressure of 6895 Pa (1 psi) on the face (pressure)

side. The tests were conducted on a 0.3048m (1 ft) model ( 1
23
-scale) constructed of 2014-T4 aluminum in a specially

designed pressure chamber. Systematic stress measurements for all the propellers in this series are given in Boswell et al.
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(1976), and the accuracy of the measurements was estimated to be within 	5% (Boswell et al., 1976). Deflection

measurements of the 72�-skew model (propeller 4383) via holographic techniques were presented in Dhir and Sikora

(1971).
Fig. 16. Convergence of natural frequencies with mesh size. Propeller 4148; NC �MR BEM panels, E ¼ 75GPa.

Fig. 15. Predicted natural frequencies of propellers 4381, 4382, 4383, and 4384 in air (top) and in water (bottom).
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Examples of the comparison between predicted and measured principal stresses and deflections for propeller 4383

(72� skew) are shown in Figs. 12 and 13, respectively. Also shown in Fig. 12 are the predicted stresses obtained by Kuo

and Vorus (1985) using FEM and by Boswell et al. (1976) using beam theory. As shown in the figures, the predicted
Fig. 18. Convergence of total hydrodynamic load coefficients (per blade) with mesh size and time step size. Propeller 4148;

E ¼ 75GPa.

Fig. 17. Convergence of cavitation pattern with mesh size and time step size. Propeller 4148; NC �MR BEM panels, E ¼ 75GPa.
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stresses and deflections compared well with experimental measurements and with the numerical results obtained

by Kuo and Vorus (1985). The results also indicate that the modified beam theory is not able to capture the stress

distribution for highly skewed propellers. Comparison of the predicted maximum principal stress contours (in ksi) for

all four propellers are shown in Fig. 14. As expected, the maximum stress levels increased with increasing

skew. In addition, as the skew angle increases, the maximum principal stress moves toward the trailing edge at the inner

radii and towards the leading edge at the outer radii, which agreed with experimental measurements presented in

Boswell et al. (1976).

The predicted natural frequencies of the propellers in air and in water are shown in Fig. 15. As indicated in

the figure, the natural frequencies decreased substantially in water due to the added mass effect. In addition, the

natural frequencies decreased with increasing in skew due to increase in blade flexibility. The numerical prediction

using the present method for all four propellers were generated using one layer of 60� 36 quadratic solid elements

(C3D20R and C3D15). The assigned material properties are as follows: r (fluid density) ¼ 1000 kg=m3,

rs (solid density) ¼ 2800 kg=m3, E (Young’ s modulus) ¼ 75GPa, and n (Poisson’ s ratio) ¼ 0:33.
Fig. 19. Comparison of the rigid blade and elastic blade cavitating force harmonics (per blade) for E ¼ 75GPa. Propeller 4148;

50ðNCÞ � 15ðMRÞ BEM panels, Dy ¼ 6�, E ¼ 75GPa.



ARTICLE IN PRESS

Fig. 20. Comparison of the maximum and minimum principal stresses for the rigid blade and elastic blade. Propeller 4148;

25ðNC=2Þ � 15ðMRÞ FEM brick elements, Dy ¼ 6�.
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5. Unsteady hydroelastic analysis of a cavitating propeller

The presented coupled BEM/FEM method is applied to investigate the dynamic performance of propeller 4148 in

nonaxisymmetric, cavitating flow. The geometry, inflow wake, flow conditions, predicted rigid-blade hydrodynamic

performance, and comparison of the predicted and observed cavitation patterns have already been presented in Section

3.2. The unsteady hydrodynamic forces, blade stress, and deflections were not measured in the experiment. Thus, only

numerical predictions are shown in this section. The propeller diameter is 304.8mm (1 ft), and the propeller angular

velocity is 1050 rpm. The assigned material properties are as follows: r (fluid density) ¼ 1000kg=m3,

rs (solid density) ¼ 2800kg=m3, E (Young’ s modulus) ¼ 75GPa, and n (Poisson’ s ratio) ¼ 0:33. The structural

damping is assumed to be negligible compared to the hydrodynamic damping. Thus, the total damping matrix is the

same as the hydrodynamic damping matrix. The predicted natural frequencies in air and in water are shown in Fig. 16

along with the predicted wetted mode shapes. The reduction in natural frequencies due to added-mass effect was

approximately 50% for all the modes. Also shown in Fig. 16 is the convergence of the natural frequencies in water with

number of BEM panels.2 The convergence of the unsteady cavitation patterns and total hydrodynamic load coefficients

(F totðtÞ ¼ F ðtÞ þ f ðtÞ) per blade with varying grid size and time step size (via blade angle increment Dy) are shown in

Figs. 17 and 18, respectively.KF x
, KFy

, and KFz
denote the x, y, and z components of the per blade force coefficients

nondimensionalized by rn2D4. KMx
, KMy

, and KMz
denote the x, y, and z components of the per blade moment

coefficients nondimensionalized by rn2D5. The variables n and D denote the propeller rotational frequency and

diameter, respectively.

As shown in the figures, the numerical solution converged with space and time discretizations. Comparison of the

rigid-blade and elastic blade force harmonics and the time-history of the maximum principal stresses are shown in Figs.

19 and 20, respectively. The fundamental natural frequency of propeller 4148 in water is 343 Hz, which corresponds to

the 20th harmonic of the propeller angular velocity (1050 rpm or 17.5Hz). Thus, only small amplifications of the higher

harmonics are expected for KFx
and KMz

since the first mode is bending about the z-axis. As shown in Figs. 19 and 20,

this behavior is correctly predicted by the current method.

To demonstrate the effect of resonance, the Young’s modulus, E, of the material was reduced to 15GPa, while all

other input parameters were kept constant. Due to the increase in material flexibility, the blade’s fundamental natural

frequency in water is reduced to 151.5Hz, which corresponds to the ninth harmonic of the propeller angular velocity.
2NC �MR (chordwise by spanwise) BEM surface panels is equivalent to NC=2�MR (chordwise by spanwise) volumetric FEM

elements.
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Fig. 21. Comparison of the rigid blade and elastic blade cavitating force harmonics (per blade) for E ¼ 15GPa. Propeller 4148;

50ðNCÞ � 15ðMRÞ BEM panels, Dy ¼ 6�.
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The resulting total hydrodynamic load coefficients (F totðtÞ ¼ F ðtÞ þ f ðtÞ) per blade are compared with the rigid-blade

hydrodynamic load coefficients in Fig. 21. As expected, the load coefficients around the ninth harmonic are amplified.

Comparison of the blade tip displacements at the trailing edge for E ¼ 75GPa (aluminum) and E ¼ 15GPa (test

material) is shown in Fig. 22. As expected, the displacements are significantly amplified for E ¼ 15GPa. In addition,

there are 20 oscillations per revolution for E ¼ 75GPa and nine oscillations per revolution for E ¼ 15GPa, which

confirms that the oscillations are due to blade vibration corresponding to the first mode in water.
6. Conclusion

A 3-D potential-based BEM has been coupled with a 3-D FEM for the time-dependent hydroelastic analysis of

cavitating propulsors. The BEM is applied to evaluate the moving cavity boundaries and corresponding hydrodynamic

forces, as well as the added mass and hydrodynamic damping matrices. The FEM is applied to analyze the structural

deformations and stress distributions due the applied hydrodynamic and centrifugal loads. The added mass and
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Fig. 22. Comparison of the blade tip displacements at the trailing edge for E ¼ 75 and 15GPa. Propeller 4148; 50ðNCÞ � 15ðMRÞ

BEM panels, Dy ¼ 6�; u, v, and w denote the displacements in the x, y, and z directions, respectively.
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hydrodynamic damping matrices are superimposed onto the structural mass and damping matrices, respectively, to

account for the change in hydrodynamic pressure and blade motion due to fluid–structure interaction. The problem is

solved in the time-domain using an implicit time integration scheme. The formulation for both BEM and FEM has been

presented, along with the hydroelastic coupling algorithm. The predicted hydrodynamic forces and cavitation patterns

compared well with experimental measurements and observations. Systematic experimental validation studies showed

excellent agreement between the predicted and measured natural frequencies, stress distributions, and blade

displacements. The predicted hydroelastic response of propeller 4148 in unsteady, cavitating flow seemed reasonable,

and the results converged with grid size and time step size. Based on the results, the following conclusions can be drawn:
(1)
 Quadratic continuum elements are recommended for the finite element modelling of propeller-like geometries.

Linear elements are not suitable due to shear locking and hourglass problems.
(2)
 The modified beam theory will not be able to accurately capture the stress distribution of complex propeller

geometries (e.g. blades with wide outline, high skew, vastly asymmetrical blade sections, etc.) due to the

oversimplifications involved. In addition, the beam theory will not be able to capture the higher mode dynamics due

to its inability to model the twisting of the blades.
(3)
 The maximum stress levels increased with increasing skew, and the location of the maximum stress moves toward

the trailing edge at the inner radii and toward the leading edge at the outer radii for highly skewed propellers.
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(4)
 The blade natural frequencies decreased with increased skew due to increase in blade flexibility.
(5)
 The blade natural frequencies decreased in water due to added mass effects. The decrease in fundamental frequency

may cause the blades to resonate at lower harmonics, which will increase the magnitude and period of the

oscillations of the hydrodynamic blade forces, stresses, and displacements.
Although the present method compared well with experimental measurements for metallic propellers and converged

quickly with grid size and time step size, additional work is still needed to account for change in hydrodynamic load due

to blade deformation. For moderate to very flexible propellers (e.g. composite propellers), substantial blade

deformations will occur (i.e. severe change in pitch, skew, and rake distributions), which will in turn affect the

hydrodynamic performance and cavitation patterns. Work is currently underway to extend the present method for fully

nonlinear hydroelastic analysis of cavitating propellers in steady and unsteady flow conditions.
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